On Coset Weight Distributions of the 3-Error-Correcting BCH-Codes

نویسندگان

  • Pascale Charpin
  • Victor Zinoviev
چکیده

We study the coset weight distributions of the 3-error-correcting binary narrowsense BCH-codes and of their extensions, whose lengths are, respectively, 2m − 1 and 2m, m odd. We prove that all weight distributions are known as soon as those of the cosets of minimum weight 4 of the extended code are known. We point out that properties of the cosets which are orphans yield interesting properties on the other cosets. We describe the classes of cosets which are equivalent under the affine permutations. At the end we produce significant numerical results, proving that the number of distinct weight distributions of cosets increases with the length of the codes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The coset weight distributions of certain BCH codes and a family of curves

Many problems in coding theory are related to the problem of determining the distribution of the number of rational points in a family of algebraic curves defined over a finite field. Usually, these problems are very hard and a complete answer is often out of reach. In the present paper we consider the problem of the weight distributions of the cosets of certain BCH codes. This problem turns ou...

متن کامل

On Step-by-Step Complete Decoding Triple-Error-Correcting Binary BCH Codes

The decoding beyond the Bose-Chaudhuri-Hocquenghem (BCH) bound is always an interesting research topic in block error correction codes. However, searching a complete decoding algorithm is not easy since all the error patterns that belong to the coset leaders of the standard array need to be correctable [1]. Both the well-known standard algebraic method and the step-by-step method can be used to...

متن کامل

Weight distributions of cosets of two-error-correcting binary BCH codes, extended or not

Let B be the binary two-error-correcting BCH code of length 2" 1 and let B be the extended code of B. We give formal expressions of weight distributions of the cosets of the codes B only depending on m. We can then deduce the weight distributions of the cosets of B. When m is odd, it is well known that there are four distinct weight distributions for the cosets of B . So our main result is abou...

متن کامل

The dimension and minimum distance of two classes of primitive BCH codes

Reed-Solomon codes, a type of BCH codes, are widely employed in communication systems, storage devices and consumer electronics. This fact demonstrates the importance of BCH codes – a family of cyclic codes – in practice. In theory, BCH codes are among the best cyclic codes in terms of their error-correcting capability. A subclass of BCH codes are the narrow-sense primitive BCH codes. However, ...

متن کامل

The Second Generalized Hamming Weight of the Dual Codes of Double-error Correcting Binary Bch-codes

In this note we determine the second generalized Hamming weight of the dual codes of binary doubleerror correcting BCH-codes.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Discrete Math.

دوره 10  شماره 

صفحات  -

تاریخ انتشار 1997